Pages

Wednesday, June 13, 2012

PROPULSIVE EFFICIENCY



PROPULSIVE EFFICIENCY

37. Performance of the jet engine is not only concerned with the thrust produced, but also with the efficient conversion of the heat energy of the fuel into kinetic energy, as represented by the jet velocity, and the best use of this velocity to propel the aircraft forward, i.e. the efficiency of the propulsive system.
38. The efficiency of conversion of fuel energy to kinetic energy is termed thermal or internal efficiency and, like all heat engines, is controlled by the cycle pressure ratio and combustion temperature. Unfortunately, this temperature is limited by the thermal and mechanical stresses that can be tolerated by the turbine. The development of new materials and techniques to minimize these limitations is continually being pursued.
39. The efficiency of conversion of kinetic energy to propulsive work is termed the propulsive or external efficiency and this is affected by the amount of kinetic energy wasted by the propelling mechanism. Waste energy dissipated in the jet wake, which represents a is the waste velocity. It is therefore apparent that at the aircraft lower speed range the pure jet stream wastes considerably more energy than a propeller system and consequently is less efficient over this range.
However, this factor changes as aircraft speed increases, because although the jet stream continues to issue at a high velocity from the engine its velocity relative to the surrounding atmosphere is reduced and, in consequence, the waste energy loss is reduced. reference to fig. 21-9 it can be seen that for aircraft designed to operate at sea level speeds below approximately 400 m.p.h. it is more effective to absorb the power developed in the jet engine by gearing it to a propeller instead of using it directly in the form of a pure jet stream. The disadvantage of the propeller at the higher aircraft speeds is its rapid fall off in efficiency, due to shock waves created around the propeller as the blade tip speed approaches Mach 1.0. Advanced propeller technology, however, has produced a multi-bladed, swept back design capable of turning with tip speeds in excess of Mach 1.0 without loss of propeller efficiency. By using this design of propeller in a contra-rotating configuration, thereby reducing swirl losses, a 'prop-fan' engine, with very good propulsive efficiency capable of operating efficiently at aircraft speeds in excess of 500 m.p.h. at sea level, can be produced.


43. To obtain good propulsive efficiencies without the use of a complex propeller system, the by-pass principle (Part 2) is used in various forms. With this principle, some part of the total output is provided by a jet stream other than that which passes through the engine cycle and this is energized by a fan or a varying number of LP. compressor stages. This bypass air is used to lower the mean jet temperature and velocity either by exhausting through a separate propelling nozzle, or by mixing with the turbine stream to exhaust through a common nozzle. pass ratios in the order of 15:1, and reduced 'drag' results due to the engine core being 'washed' by the low velocity aircraft slipstream and not the relatively high velocity fan efflux.

Fig. 21-9 Propulsive efficiencies and aircraft speed.


Fig. 21-9 Propulsive efficiencies and aircraft speed.











45. The improved propulsive efficiency of the bypass system bridges the efficiency gap between the turbo-propeller engine and the pure turbo-jet engine. A graph illustrating the various propulsive efficiencies with aircraft speed is shown in fig. 21-9.

No comments:

Post a Comment