AIRCRAFT CONTROL
29. The low forward speeds of V/STOL aircraft during take-off and transition do not permit the generation of adequate aerodynamic forces from the normal flight control surfaces, it is therefore necessary to provide one or more of the following additonal methods of controlling pitch, roll and yaw.
Reaction controls
30. This system bleeds air from the engine and ducts it through nozzles at the four extremities of the aircraft (fig. 18-18), The air supply to the nozzles is automatically cut off when the main engine swivelling propulsion nozzles are turned for normal flight or when the lift engines are shut down. The thrust of the control nozzles is varied by changing their area which varies the amount of airflow passed.
Differential engine throttling
Fig. 18-18 Reaction control system. |
Reaction controls
30. This system bleeds air from the engine and ducts it through nozzles at the four extremities of the aircraft (fig. 18-18), The air supply to the nozzles is automatically cut off when the main engine swivelling propulsion nozzles are turned for normal flight or when the lift engines are shut down. The thrust of the control nozzles is varied by changing their area which varies the amount of airflow passed.
Differential engine throttling